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ABSTRACT

A Guidance-Navigation Separation Theorem. JAMES E. POTTER, Staff

Engineer, Experimental Astronomy Laboratory, Massachusetts Instituteof Tech-

nology, Cambridge 39, Massachusetts.

A trajectory control system for a space vehicl,_may be divided into two sub-

systems: the navigation subsystem which filters noisy navigation measurements in

order to generate estimates of the vehicle's pos_.tion,velocity and mass and the guidance

subsystem which uses this information to generate commands for the vehicle propulsion

system in order to accomplish the assigned mission with a minimum cost. Generally,

in order to obtain an optimum control system it is necessary to coordinate the

design of the two subsysgems so that the guidance subsystem is as insensitive as

possible to the expected navigation errors and the type of errors produced b) the

navigation subsystem has the least effect on guidance. However, in the somewhat

idealized case when the vehicle dynamical equations are linear and the cost function

is quadratic, the separation theorem states that the optimum control system is

obtained when the guidance and navigation subsystems are designed separately

without considering their Interaction. This result was obtained for smnpled data

control systems by Gunkel and Joseph and is extended to continuous time contrQl

systems in the present paper. /ILL_/f_ )

*Work supported by NASA Grant N._G 254-6_:.
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A GUIDANCE-NAVIGATION SEPARATION THEOREM

by

Dr. James E. Potter

Experimental Astronomy Laboratory

Massachusetts Institute of Technology

section i Introduction

The subject of this paper is the design of a linear blac|', box that receives navi-

gation measurements as inputs and generates outputs which control the thrust magnitude

and vectoring of a space vehicle propulsion system. It will be assumed that the navi-

gation measurement process and the vehicle dynamic_tl equations can be linearized and

that it is desired to design the black box to minimize the statistical mean of a quadratic

mission cost function involving fuel expended, deviation from the reference or mean

trajectory and terminal error.

For the purposes of design, the overall vehicle control system is often broken up

ir_to two parts - the navigation and guidance subsystems. The navigation subsystem proc-

esses navigation measurements to obtain a running estimate of the vehicle state. Navi-

gation measurements Ordinarily consist of space sextant sightings, star-landmark track-

er outputs, radar data, and accelerometer outputs. The vehicle state might consist of

vshicle position, velocity, mass and navigation instrument biases. The guidance sub-

system makes use of the state estimate obtained from the navigation subsystem to gener-

- ate inputs to the vehicle propulsion system in order to achieve the mission with mini-

mum cost. This terminology is somewhat prone to confusion since the terms navigation

system and guidance system both are frequently used to designate the overall control

system. However, the definition" given above are in common use and accurately de-

scribe the design situation.

In their Ph.D. theses, Gunkel and Joseph considered sampled data or discrete

time control systems having measurements contaminated with white nois*_ r,s inputs.

They showed that in this case optimum guidance and navigation subsystemscan be

synthesized independently. The guidance subsystem is designed to minimize the mission

cost function assuming perfect navigation and that there are no random trajectory dis-

turbances due to guidance implementation errors or other causes. Navigation is accom-

pl/shed by using a minimum variance (or maximum likelihood or Wiener - all terms

mean about the same thing) statistical filter to obtain the vehicle state from the navi-

gation measurements. Th_ <,verall navigation - guidance black box obtained in this way

is optimum for the given mission cost function. Thus, synthesis of the navigation and

guidance subsystems can be carried out separately and only the design of the guidance

subsystem depends on the mission cost function. I. 2

I
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In this paper, the Gunkel - Joseph separation theorem is proved for the continu-

ous control case with navigation measurements contaminated with correlated noise.

The dynamic programming approach employed by Gunkel and Joseph is not used explicitly

although it is inherent in the present method of proof. The present analysis also applies

to the sampled data case if the time integrals are replaced by sums, and yields a some-

what different proof than those of Gunkel and Joseph. In the course _ f the proof an inter-

esting identity relating to optimum control is derived.

The validity of Gunkel - Joseph syntheses rests on the linearity of the vehicle

dynamical equations and the navigation measurement process and the use of a quadratic

mission cost function. Experience has shown that linearizing vehicle dynamical equations

leads to fairly accurate results and most navigation system design depends on linearizing

the navigation measurement process. If the mission cost function is not quadratic, it

may still be reasonable to consider only the quadratic term in the Taylor series expan-

sion of the cost function when carrying out a perturbation analysis about an optimum

trajectory. Three instances in which a quadratic mission cost function is ippropriate in

space vehicle control follow.

(1) A quadratic mission cost function arises in the most straightforward way in

the case of av2hicle employing electric propulsion. With constant power, variable

specific impulse and constant engine effeciency, minimizing propellant expenditure cor-

responds to minimizing

C = (I-I)
"" b

where a T represents thrust acceleration. A more realistic cost function is
f.b 2

where xT represents terminal error. This formulation allows a trade off between tar-

geting accuracy and fuel expenditure. If k is zero in equation (1-2), the guidance system

gain will become excessive in the vicinity of the target.

(2) With discrete impulsive thrusting or velocity corrections, a reasonable de-

sign approach is to try to minimize the mean of the sum of the squares of the velocity

increments plus the target miss. In this case the cost function is given byn

k=l

It is frequently felt that, if there is a large state of uncertainty at the time when a vel,_c-

ity correction is to be made, it is not desirable to make the full correction computed on

xhe assumption that the state estimate is exact, since new velocity errors would be in-

troduced which would later have to be corrected. This is probably true when the cost

function is the total fuel expended in making the velocity corrections. However, in the

2

1964019074-009



case of the quadratic cost function in equation (1-3)° the separation theorem implies

that the best strategy is, regardless of the actual state uncertainty, to make the full

velocity correction at each correction time as if there were no state uncertainty.

(3) In the chemical powered segments of a space mission the goal is often to

follow a reference trajectory which i.3 optimum in some sense. The function of the con-

trol system in this case is to minimize the deviations from the nominal thrust program

and the reference trajectory due to nonstandard initial conditions and ,,ehicle parameters.
A suitable cost function for this situation is

Here, x denotes the deviation from the state the vehicle would have on the reference

trajectory and u denotes the deviation from the nominal thrust program.

The separation theorem also applies to attitude control system design and in_tru-

"_ meat design or other control problems where a linear dynamical system model and a

quadratic cost function are appropriate.

It will be assumed that the behavior of tbe dynamical system is described by the

linear vector differential equation

_' = F (t) x + G (t) u + _.v (1-4)

In thi.s equation, the k-dimensional vector x represents the output or state of the dynamical

system, the p-dimensional vector u represents the control input to the dynamical system

and the k-dimensional vector _ represents the disturbing forces driving the dynamical

system. F(t: _tnd C-(t) denote k by k and k by p matrices respectively. The mission or

control problem will be assumed to start at time t = 0 and end at time t = f.

The object in designing the feedback loop which generates the dynamical system

control input u using information about its output x is to minimize the quadratic mission

cost function

f

4_
In this cost function, the k by k matrix C 1 determines the weighting to be given to ter-w

minal error, the p by p matrix C2(t) weights the magnitude of the corrective signal

generated by the feedback loop and the k by k matrix C3(t) weights the error in state

during the mission The matrices C1, C2(t) and C3(t) are assumed to be positive
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definite and symmetric. The Lerm uTc.2u_ is included in th:: cost function either to econo-

mize on fuel usedto control the system, as would be the case in making velocity coffee-

[ions to control the trajectory cf a space vehicle, o'" to keep the control input within the

linear respo_:se range of the dynamical system. If this term is not included in the cost

function, "the mathematically optimum feedback loop has infinitp gain art,i nulls out the

state error by sending a delta function control signal to the dynamical system as soon

as the system is turned on. This kind of performance is generally not what one is aiming

for in a rval ,Jystem and it is therefore necessary to include the uTc_u terrh in the cost
function.

if the mi_ion is already partially completed, C (t) given by the formula
f

C(t}= xT(f}Cl=X(f)• _ {uTc2u+xTc3xI_ _ dt (I-6)

will denote the cost of completing the mission from time t onward.

The signals availablt_ for generating the control signal u will be assomed to be of

the form

_re(t) = H(t) x (t) + n(t) (1-7). -

Here m is a q-dimensional vector and H is a q by k matrix and n(t) represents measure-

ment noise. In order for the separation theorem to hold, all that needs to be assumed

about the statistics of n is that _.nhas mean zero and is uncorrelated with the disturbing

force v. :

The following notation will be used to describe the filters employed in the feedback

loop.

I., denotes the filter. The tilde (~) is used as a reminde='that L is not just a gain matrix

but represents a black box containing integrators, intecnal feedback loops, etc. The

quantity m inside the square brackets denotes the input sig_lal to the filter. Thus L [a}(t)

denotes the output of filter L at time t when the input is the sigoai a.

Figure 1 is a signal flow diagram of the dynamical system and filter L.

Section 2 Minimum Variance Open Loop Estimation

Throughout this section it wi_[l be assumed that the dynamical system=is operated

without feedback, that is u _- 9. The problem of estimating the state of a linear dynami-

cal system J;'iven by white noise on the basis of noisy measurements has been extensively

treated in the I_terature. The purp_.se of this section is to derive two properties of the

4
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optimum linear estimator which are needed in the p_-oof of the separation theorem.

If _ is a random vector with mean zero. a generalized variance of E will b_"de-

fined as

VarQ(£) = _TQ_

where Q is a positive semidefinite matrix. If Q is positive definite and not merely semi-

definite, VarQ will be called a positive definite generalized variance. The generalized
variance is an extension to vectors of the idea uf an rms value. For example, if Q is

the identity matrix, Vari(__) is the mean square length of the random vec,.ar _.

The filter [:MV will be called a minimum variance estimator Of the state x if,

for each time t and every Q. the generalized variance of the estimation error,

Var (x(t)--Q _ LMV _[m] (t)! , is less than the corresponding generalized variance for
_',ny otlier linear filter applied to the measurements, m.

In an optimization problem one expects to he asked to minimize a :;ingle cost

function, in this case a particular generalized variance of the estimation vrror. If twJ

or more cost functions are involved, a solution which is optimum for one cost function

Would not be likely to be optimum for the others and one would not expect to be able to

sxmultaneously minimize all of the cost functions. Therefore, one might wonder

whether a minimum , ariance estimator as defined above ever exists. In this respect

the optimmn statistical estimation problem is quite unusual, for the following result

holds:

Remark 1 - If at time t, the filter T, minimizes a given positive dePnite gener-

alized variance of the estimation error, x(t) - L[ m] (t). then it minimzzes
every generalized variance of the estimation error at that time. Thus, a filter

designed to minimize a given positive definite generalized variance of the esti-

mation error also minimizes every other generalized variance.

Thi_ remark is the result of the fact that regardless of which posflive definite

generalized variance is used as cost function, the criterion for an optimum filter is

that the estzmation error be uncorrelated with the past measurements. That is

for s =<t.

Under quite general assumptions about the measurement noise _n(t), Wether 3

Kalman 4 Battin 5, Bryson °,_ and Deyst7 have derived filters that minimize some ge,,er-

alized variance of the estimation error (e. g., Battin mini,-_izes the mean square length

of *,he estimation error vector).
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By the remark above, it follows that these are minimum variance estimators.

It_will be assl,med that a minimum variance estimat-'r I"0 for the state of the open lo0p

dynamical system carl be o|flained by one of these methods.

The second remark about ,_ptimum open loop estimators concerns the minimum

variance estinlator -f a vecl_ry (t) which results from rttuitiplying the state x (t) by a

time varying matrix M(I). In this cas,_ the following nearly obvious remark applies:

Remark 2 If

: _(t) = M(t)_(t)

and I'o Ira] (t) is lhe minimun, variance estimator of x(t), then M(t)L 0 Ira] (t) is

the minimum varianc-e estimator of z_ (t).

Remark 2 may be verified as follows. The correlation of they(t) estimation

error with the past mea._urements i:_ _ivcu by the expression

The quantity in brackets on the right hand side of the equation above vanishes since

_vlL is the minimum variance estimator of follows thatx. Thus. it

- M(t) =(t) m_T(t) 0 -

and therefore that M LML [m] is the minimum variance estimator of y_

Section 3 Synthesis of the Minimum Variance Estimator in a Closed Loop System

As indicated in Section l, the optimum external feedback loop for controlling the:

dyuamical system will turn out to be a minimum variance estimator of the system _tate _x

followed by a gain matrix. M. This gain matrix is designed on the assumption that the

state estimate is exact. This system configuration is illustrated in Fig. 2.

This section is concerned with the filter I'. It will he assumed in this sectionMV"

that the gain matrix M (t) has already been cho.qen.

At first glance, design of a closed loop minimum xzariance estimator seems es-

sentially different from the design of an open loop estimator since the output of the esti-

mator effects the future states of the dynamical system. Thus. the estimator has son-e

control over the future measurements and it might be wise not to estimate accurately

at the present time in order to create a favorabh, estimation en.vironment in the future.

This would indeed be the case with a nonlinear system, i,uckily, with a linear system,

superpositi0n allows the effects of feedback to be eliminated since the estimator knows

without any uncertainty what the control signal _2 is. l]y means c,f feedback withit_ the

estimation filter the effects of the known control signals can be removed and the statis--

1964019074-014



v

Z

I,u
"" El

•,, _.I,--

o

Z
._e

O,L:_I

Z
0

° |

1964019074-015



tical filtering can be carried out by open loop techniques.

Figure 3 illustrates the construction of a closed loop estimator by adding eztra

feedback loops to an open loop estimator. In practice, the open loop estimater L0

usually also contains a dynamical system model which may be combined with the one

shown in Fig, 3 to obtain a somewhat less complex overall feedback loop.

The following calculations show that the estimation error statistics for the open

and closed loop estimators are the same. From Fig. 3 it follows that

x' = Fx + G u + u (3-I)

and

z' = F z + G u (3-2)

Letting y = x - z and subtracting Eq. (3-2) from Zq. (3-I) yields

y" = Fy + ,., (3-3)

Also, from Fig. 3

m I = Hx_- Hz__+ n

or

m I = Hy + n (3-4)

Furthermore, since z (0) = 0 it follows that y_(0) = x(0) and the statistics of y(0) are the

same as those of x(0). Since the input to L 0 is ml, it follows from Eqs. (3-3) and (3-'4)

that the output y of L0 is an open loop estimate of y. Thus t.Je random vector (y - _ has

open loop estimation error statistics. But _, = x - z and = x- z from Fig. 3. Thus
^ #%

-_ =x - x and hence (x - x_ has the same statistics as the open loop estimation error.

The transi{ion from a closed loop estimator to an open loop estimator is not of

much practical interest. However, it is necessary to the theory in order to establish

the fact that there is a minimum variance closed loop estimator. Figure 4 shows how a

closed loop estimator may be used for open loop estimation by providing simulated con-

trol action through an added feedback loop. By calculations similar to those carried out

above it can be shown that the estimation error statistics for this filter are the same as

they would have been with closed loop estimation.

It now follows that, if L0 is the open loop minimum variance estimator of the

state of the dynamical system, then the closed loop estimator Lc shown in Fig. 3 is the

minimum variance closed loop estimator. For, suppose there was a closed loop esti-

mator L (I) which at time t made some generalized variance of the estimation errozc

smaller than the same generalized variance of the estimation error using Lc" It was

1964019074-016
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shown above that the closed loop estimator --Lc(1) can be converted to an ofien loop esti-

mator -t,O (I) with the same estimation error statistics. Finally, this would mean that

LO(I) is a better open loop _ --L 0filter at time t than L 0 is. This is a contradiction since
is the minimum variance estimator.

An equivalent approach to closed loop estimator design is to synthesize a mini-

mum variance estimator

t=
assuming that the control program u (t) is known a priori. To use this filter as a closed

loop estimator the signal N[_ is fed back to the u input of the filter. It is not ob.vlous

that this procedure always makes sense mathematically. However, in most cases of

practical interest, the equation

[m,m
A

determines x as a function of m and the estimation error staristics are the same as in

the case when u(t) is really known a prio.ri.

-The fact which is needed in the proof of the separation theorem is that u = M _x

is the minimum variance closed loop estimator of the optimum control signal M _.

This follows easily from the remarks above and the fact that in the open loop case M __

is the minimum variance estimator of M x.

Example - If the measurement noise n (t) is white and uncorrelated with the

initial state of the system, Kalman showed that the open loop minimum variance

estimator of the dynamical system state is the filter illustrated in Fig. 5 In

this filter, the weighting matrix W (t) is given by the formula

W(t) = N-l(t) ld(t) H T(t)

where

n(t) nT(s) = N(t) 6 (t - s).

and E (t) is estimation error covariance matrix found by solving the matrix

Ricatti differential equation

E' = FE + EF T + S- EHTN °1 HE

where the matrix S (t) is defined by the equation

v(t) vT(s) = S(t) 6 (t - s)

5 for L0 in Fig. 3 yields the filter illustrated in Fig. 6. ThisSubstituting Fig.

filter may be simplifie d to yield the form illustrated in Fig. 7.

If the control input u(t) is known a priori, the open loop estimator shown in Fig. 5

takes on the modified form illustrated in Fig. 8. By connecting the u input of this filter

to the _ output through the gain matrix M, the filter shown in Fig. 7 is again obtained_t

12
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Section 4 "i'h_' F'undam,.llt;JI Ida.n_lity

Kalrnall H ha_ shown th;H the. _ontrol IH',_ram

u(t) (..- I (t) (;'l" (1) !I0) x(t) (1- I)

ItS,l_ittll/t..; th,- nll.-;'.ii,_H t.P.<.! (" iI,'ovid,'d tha! th,-r,, ar,. no disturhitlg for('es i._'and that lhe

,_tate is know,t e×a('tly all of th," time. Th,. m;ltri_: It(t) in Eq. (4-I) is defined a.q the'

solution of the matrix Rir'_-ali differer;tial equation

U' = - F £ [! - U F" + U G C2-I G F U - C 3 (4-2)

with the boundary condilion
U(f) = ('. (4-:,/

It turlls out that U (t) is a po,4ilive semidefi,zite symmetric matrix The physical

significance of U(t) is that. if the present state of the dynamical _vstcm is x(t). the co_t

of completing the mission employing the optimum control profit-am is given by the formula

C(t) = xT(t) [J(t) x(t) : (4-4)

Equation (4-4) follows from the identity proved later in thi_ section.

A striking feature of Kalman's result is that the feedback gain matrix. -C 2 1 GT U.

does not depend on the initial state of the dynamical system. A priori, all that one would

expect to be able to accomplish, in synthesizing a linear feedback loop. would be to mini-

mize the mean cost function for an ensemble of representative initial states. In fact.

however, if there is no state uncertair:ty the actual c-ost and not its ensemble average can

be minimized for every initial state employing the same feedback gain matrix.

Since. in the problems under investigation on tl_;s paper.. Complete information

about the present state is t;qt available to the controller. the control input to the

dynamical system will be writt_:,_ as

u_-- _ C2-I GTUx _ E (4-5)

where _U represents *.he devia!ion from the optimum control input.

In order to analyze the effects of uncertainty in the knowledge of the state ",nd

random forces driving the car, trolled system, a formula for the cost C (t) of completing

the mission is needed.

Identity:
C(t) = xT(t)U(t)x(t) + v T(t)x(t) + w(t) (4-6)

where U(t) is defined by Eqs. (4-2) and (4-3) and v and w satisfy the differential equations

v' = - F- G C 2 1 G T U v - 2U_v 14-71

, T tiT Tw - = - v_ G-_.- A E - =.u v (4-8)

and the boundary conditions
,_(f) -- 0 (4-9)
w(f) = 0 (4-10)

17
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Proof of Identity - From :he boundary conditions impo._ed on U, X, and w, it

follows that C(f) as defined by the identity has the value

C(f) = T(f) CI x(f) (4-11)

Itwill be shown below that

dC T

d t - u C2u - xTc3x (4-12)

Integrating Eq_ (4-12) from t to f yields

C(D- C(t) = -.Iif(u TC 2 u+x TC32_) dt

and by Eq. (_-11)

C(t) 2LfTBxT + I"f TC x) dt= (uTc2 u- + x 3-
t

which is the correct formula for the cost to complete the mission.

It only remains to verify Eq. (4-12). Now

(x T Ux)' = 2.(x') T Ux + x TU' _ (4-13)

Substituting Eqs. (I-4), (4-2) and (4-5) into (4-13) and collecting terms yields

(2_Tu2£)" =-x T _GC2I GTu + C31 x (4-14)

+ 2(GM + _)T Ux

Similarly

(vTx)' = (v') T x _-vT2; '

and by (I I), (4-2), and (4-7)

(v T x)" = -2_ T Ux + _vT(G/_ + v) (4-15)

Adding Eqs (4-9), (4-14), and (4-15) yields

C' = -xT !UGC21GTu + C31 x �2,TGTu_-/_Tc2_

or collecting terms

C' = -_xTc3x - (-C21G TUx + _)Tc2(_C2 IG T Ux + it)

18
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Finally by Eq. (4-5)

C' = -KTC3 _ - _Tc2u

and the proof of the identity is complete.

Note that statistics have not _et entered the picture. Two significant results can

be obtained from the identity.

Result i - If the state x can be measured exactly and there are no disturbing

forces driving the controlled system (u - 0). then

f TC(t) = xT(t) Ultlx(t) + __ (t)C2(tI_(t) dt (4-16)
t

.: This gives another proof that Kalman's feedback matrix is optimum in the

deterministiccasc, since the costis clearlyminimized when__ (t)---0. Also.

with _J(t)- 0, Eq. (4-16)reduces to Eq. (4-4)and the latterequationis verified.

This resultmay be proved as follows. Since _u"----0, Eq. (4-7)becomes

v_. = - F-G GTu v

with the boundary condition

: ¥(f) = 0

In thiscase v_(t)m 0 since itis the solutionof a homogeneous lineardifferential

equationwith a zero bounda_'ycondition. With v = v = 0, Eq. (4-8)becomes

, T
w = -__ C2R (4-17)

with w(f) =0. Thus

f

T C2 _ dt (4- 181w(t)=.: _ _

Substitutingv = 0 and (4-18)intothe identityyields Eq. (4.-!6).

Result 2 - Ifthe disturbingforce v(t)is white noise with mean zero and

covariance matrix

T
v(t) u (s) = S(t) 6 (t -S) (4-19)

and _(t) and x (t) are uncorrelated with u(s) for tK s then the mean cost

- 19 -
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to complete the mission is given by the formu'.a

C(t)--- _ xT(t)U (t)_(t)"_ St {_T C2_ _" tr (SU) } dt

Proof of Result From Eq. (4-7) it follows that

f
J_k

v_(t) = _ 2 @ (% s) U(s) v (s) ds (4-21)
t

where '_ is the solution of the differential equation

- { ]"F - G C2- 1 GT U8t =

with the boundary condition _ (t, t) = I . The mean value of the _econd term in the

identity is thus given by the equation

f

T: v (tlxlt) = 2 xTlt)_) (t. s) U(slk:(s) ds

: 2 tr _(t, slU(slE(slx T(tlds

The matrix o (a) x T (t) is zero since _.xT is uncorrelated with v (s) for t • s and
therefore

T(t) x(t) = 0 (4-22)

From equations (4-8) and (4-10) it follows that the mean of the third term of the

iden'Jty is given by the formula

f

= MT p_ +_ v dt (4-23)

BY means of Eq. (4-21) the first term under the integral sign in F_,q. (4-23) may be
written as

tvT(tlGltl/_lt) = 2 tr GT(t) _ (t,-s) U(sl£-(sl__.T(t) ds
t

Since _ (t) is uncorrelated with v (s) for t s s. _ (s) _T (t) = 0 and

20
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T
v (t) G(t) p(t) = 0 (4-24)

By means of Eq. (4-21) the third term under the integral sign in Eq. (4-23) may be

written as

}u (tlvlt) = 2 tr ¢:_1t, s) UlsI_ls) u.Tlt) ds

_, t

and therefore

_ vTlt) v(tldt = 2 tr It, s) U(slu(sluTlt) ds d 14-251

t O t O t

Interchanging the order of integration on the right hand side above yields

f f f s

(_(t, s) U(s) u(s)uT(t) dsdt ffi _) (t, s) U(s) u.s. vT.t. dt ds

t O t t O t O

and interchanging the dummy variables s and t results in the identity

f f f t :

_ _ (_ (t, s) U(s) u(s)uT(t,d_dt = _ _ (_ (s, t)U(t)u(s)uT(t)dsdt (4-26,

t o t tO t O

Coml_ining Eqs. (4-25) and (4-26) yields

f

u TIt) vlt) dt = tr (J) It, s) Uls) vie) u TIt) dsdt

tO t O t

tO to

f f

= tr K (t, s) u Is) u T(t) ds dt

t o tO

where

(s, t)U(t) if t > s
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Note that K (t, s) is continuous and that K (t0 t) = U(t). Now, since

_v(s) vT(t) = S(s) 6 (s - t), the equation above becomes

f f

f pT(t) V(t) at = tr -K(t, s) S(s) 6 (S - t) ds d

to L to to
f

= _ ,r (U(s) S(s_ ds (4-27)
I to

Finally, combining Eqs. (4-23), (4-24), and (4-27)yields

f

_ = _t (_TA_- + tr(US)) dt (4-28)

and the result follows from Eqs. (4-21), (4-25) and the identity.

Section 5. The Separation Theorem

Theorem: Assume that the disturbing force_v is white noise and is uncorrelated

with the initial state of the dynamical system and the measurement noise n. Then the

control signal u, which minimizes the mean mission cost, is

U(t) --" M(t)LMV [m] (t) (5-1)

where M (t) is the optimum feedback gain matrix, M = - C; 1 GT U, in the case when

the state is known exactly, and LMV is the closed loop minimum variance estimator
of the dynamical system state. If E (t) is the estimation error covariance matrix for

LMV,

E =(x- LMv[m]i (x- LMV[rn] _ (5-21

and s (t)is definedby Eq. (4-19),then the mean costto complete the mission when the

optimum feedback filter is employed, is given by the formula
f

C(t) = U(t)_x(t) +.j tr EMTc2 + S dt (5-I)
t

Proof: With any form of linear feedback, the dynamical system control

signal u is the result of passing the measurements m through some linear filter L sow

that u_= L [m I . The deviation of the actual control signal u from the control signal
Mx which would be employed if the state was known exactly is
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_=/_- Mx=L lID] - Mx

and, by Eq. (I-7)

._ OH@ - M__+_ [_.? (5-2)
Also, by Eqs. (I-4)and (I-7)itfollowsthat

_,' --r_, +G'C [H_@ +G_ [_] +_ (5-3)

If follows ,,y the hypothesis of the separation theorem and Eqs. (5-2) and (5-3) that

__(t) and x(t) are uncorremted with _(s'} for t_<s. Thus, Result 2 of Section 4 applies,

and the mean mission cost is given by the formula

f

=xT(t. U(tl_x(t)* [mR - M_x +trlSU) dt (5-4)C
o J

The desiJg_ of the filter._ only affects the mean mission cost through the term

Varc2 L [m_j - M _x in Eq. 15-41. Obviously,-the best choice for L is the minimum

variance closed loop estimator of M x. By section 3, this estimator is M_MV wl_re

_MV is the closed loop minimum variance estimator of the dynamical system state x.

Thus, the first half of the theorem is proved.

Also by Result 2 of Section 4, the cost to complete the mission is given by the

formula

C(t) = ,rT(t) U(t) x(t) + tr C 2 +t )

]_it f -x1__:_L._ -_[_-
So

v ,) {" c,= M M-- [_]_ " -

= ME MT- (5-6)

and the second part of the theorem follows by substituting Eq. (5-6) into Eq. (5-5).

NOMENCLATURE

i A bar beneath a quantitydenotes a vector. Ifa vector is used in an equation

withmatrices, itwillbe assumed to be a column vector,
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NOM I",NCI,ATURE (tout)

A bar over a quantity den¢:tt's thu statistical m_tan or expected value of tile

quantity

M T A superscript T attached to tire matrix indicates the matrix transpose position.

x' A prime denotes differentiation with respect to time.

tr A Denotes the trace r)ftile matrix A.
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